

RESEARCH ARTICLE OPEN ACCESS

Ecological Dynamics, Physical Literacy, And Game-Based Learning: An Integrated Theoretical Framework For Movement, Cognition, And Decision-Making Across Educational And Sport Contexts

Isabella Thompson

University of Toronto, Canada

Received: 07 December 2025 **Accepted:** 04 January 2026 **Published:** 01 February 2026

ABSTRACT

The study of human learning, movement, and decision-making has increasingly shifted toward ecological, systems-oriented perspectives that emphasize interaction, adaptation, and context sensitivity. Across domains as diverse as physical education, sport pedagogy, motor development, cognitive psychology, and game-based learning, scholars have challenged reductionist and linear models of skill acquisition in favor of approaches that conceptualize learners as embedded within dynamic environments. Drawing exclusively on the theoretical and empirical foundations provided by the referenced literature, this article develops a comprehensive, integrative framework that unites ecological dynamics, physical literacy, motor coordination theory, and game-based learning into a coherent model of embodied learning. The central argument advanced is that movement competence, cognitive regulation, motivation, and decision-making emerge from reciprocal interactions among individual, task, and environmental constraints, and that these interactions can be deliberately designed through pedagogical and game-based interventions to promote adaptive learning outcomes.

The article synthesizes seminal constraint-based theories of coordination (Newell, 1986), contemporary ecological dynamics research in sport and physical education (Davids and colleagues; Renshaw & Chow, 2019), and the growing physical literacy discourse (Rudd, 2021; O'Sullivan et al., 2020). It further integrates research on executive function, self-regulation, and early academic achievement linked to movement-based tasks (McClelland et al., 2014; Rudd et al., 2019), demonstrating how embodied activity serves as a critical substrate for cognitive development. Complementing this perspective, literature on game-based and problem-based learning (Malone, 1981; Kili, 2007; Lawson, 2003) is examined to show how well-designed games function as ecological learning environments that afford exploration, intrinsic motivation, and systems thinking.

Methodologically, the article adopts a conceptual synthesis and theory-building approach, drawing descriptive and analytical insights from validated assessment tools such as the Game Performance Assessment Instrument (Oslin et al., 1998), network analysis in team sports (Passos et al., 2011), and landscape-based decision-support gaming models (Jankowski et al., 2006). The results of this synthesis are presented as a detailed explanatory account of how learning emerges across physical, cognitive, and social domains when constraints are strategically manipulated. The discussion critically examines implications for pedagogy, curriculum design, assessment, and future interdisciplinary research, while also addressing theoretical tensions and practical limitations. The article concludes by arguing that ecological dynamics and game-based learning together provide a powerful, unifying paradigm for understanding and enhancing human learning across the lifespan.

Keywords: Ecological dynamics, physical literacy, motor development, game-based learning, constraints-led pedagogy, decision-making.

INTRODUCTION

Understanding how humans learn, move, and make decisions has long been a central concern across multiple academic disciplines, including psychology, education, kinesiology, and cognitive science. Traditionally, these domains have often relied on linear, stage-based, and reductionist models that treat cognition, motor behavior, and motivation as largely separable processes. In such approaches, learning is frequently conceptualized as the internalization of abstract representations, movement skill as the execution of pre-programmed motor patterns, and decision-making as a rational process detached from bodily action and environmental context. Over the past several decades, however, a substantial body of research has challenged these assumptions, arguing instead for models that emphasize embodiment, interaction, and emergence (Newell, 1986; Riley et al., 2011).

Within motor development and sport science, ecological dynamics has emerged as a powerful theoretical framework for explaining how coordinated movement and skilled behavior arise from the continuous interaction of individual, task, and environmental constraints (Davids et al., 2011; Renshaw & Chow, 2019). This perspective rejects the notion of a single optimal technique or developmental pathway, emphasizing instead the adaptability and variability of human movement systems. At the same time, the concept of physical literacy has gained prominence in educational and policy contexts, proposing that lifelong engagement in physical activity depends on the integrated development of movement competence, motivation, confidence, knowledge, and understanding (O'Sullivan et al., 2020; Rudd, 2021). While physical literacy has often been discussed normatively, ecological dynamics offers a robust theoretical grounding for explaining how physical literacy develops through lived, embodied experiences.

Parallel developments have occurred in the study of learning and instruction more broadly. Research on intrinsic motivation and game-based learning has demonstrated that well-designed games can foster deep engagement, problem-solving, and conceptual understanding by aligning challenge, curiosity, and control (Malone, 1981; Malone & Lepper, 1987). In environmental education, landscape planning, and ecological management, gaming approaches have been used to model complex systems and support collaborative decision-making (Lawson, 2003; McIntyre, 2003; Hopwood et al., 2013). These approaches share with ecological dynamics a

commitment to learning as an active, situated process rather than passive information transmission.

Despite these converging trends, the literatures on ecological dynamics in movement science and game-based learning in education have often developed in relative isolation. Moreover, empirical work linking movement competence, cognitive regulation, and academic achievement remains fragmented, even as studies such as McClelland et al. (2014) demonstrate strong associations between embodied self-regulation tasks and early academic growth. This fragmentation represents a significant gap in the literature, limiting the development of integrated pedagogical models capable of addressing physical, cognitive, and motivational dimensions of learning simultaneously.

The purpose of this article is to address this gap by developing a comprehensive, publication-ready theoretical synthesis that integrates ecological dynamics, physical literacy, motor coordination theory, and game-based learning. Drawing strictly on the provided references, the article seeks to articulate how these frameworks converge around a shared understanding of learning as an emergent, constraint-driven process. By doing so, it aims to offer scholars, educators, and practitioners a unified conceptual foundation for designing learning environments that promote adaptive movement, effective decision-making, and sustained engagement across educational and sport contexts.

METHODOLOGY

The methodological approach adopted in this article is qualitative, conceptual, and integrative in nature. Rather than reporting new empirical data, the study undertakes an extensive theoretical synthesis of established and peer-reviewed literature drawn exclusively from the provided reference list. This approach aligns with traditions of theory-building and conceptual integration commonly employed in interdisciplinary research, particularly when addressing complex phenomena that cannot be adequately explained through single-study designs or narrowly defined variables.

The first stage of the methodology involved a close, critical reading of all referenced works, with particular attention paid to their underlying theoretical assumptions, conceptual frameworks, and methodological orientations. Foundational texts on motor development and

coordination, such as Newell's constraints model (Newell, 1986), were examined to establish core principles regarding the emergence of movement patterns. These principles were then traced through later developments in ecological dynamics and constraints-led pedagogy (Renshaw & Chow, 2019; Seifert et al., 2018), allowing for an analysis of theoretical continuity and evolution.

A second stage focused on literature addressing physical literacy and its ecological roots (O'Sullivan et al., 2020; Rudd, 2021). Here, the analysis sought to identify how physical literacy has been conceptualized in relation to learning environments, motivation, and lifelong engagement, and how ecological dynamics provides explanatory mechanisms for these processes. This stage also incorporated studies examining the relationship between movement, executive function, and self-regulation (McClelland et al., 2014; Rudd et al., 2019), highlighting empirical links between embodied action and cognitive development.

The third stage integrated research on assessment and analysis tools that operationalize ecological principles, such as the Game Performance Assessment Instrument (Oslin et al., 1998), network analysis of team sports (Passos et al., 2011), and landscape models of decision-making (Passos et al., 2020; Jankowski et al., 2006). These tools were examined not for their specific quantitative outputs, but for the way they conceptualize performance, interaction, and opportunity structures within dynamic systems.

Finally, the synthesis incorporated literature on game-based learning, intrinsic motivation, and educational gaming (Malone, 1981; Kiili, 2007; Lawson, 2003). The methodological emphasis here was on identifying parallels between game design principles and ecological concepts such as affordances, exploration, and constraint manipulation. By iteratively comparing and contrasting insights across these bodies of work, the methodology enabled the construction of an integrated theoretical narrative that spans movement science, education, and systems thinking.

Throughout this process, analytical rigor was maintained by grounding every major claim in explicit citations and by avoiding extrapolation beyond the conceptual boundaries established in the referenced literature. The result is a descriptive and interpretive account that seeks coherence, depth, and theoretical clarity rather than empirical

generalization.

RESULTS

The results of this theoretical synthesis are presented as a set of interrelated explanatory findings that collectively articulate how learning, movement, and decision-making emerge within ecological and game-based frameworks. These findings are not statistical outcomes but conceptual integrations derived from the systematic analysis of the referenced literature.

One central result is the reaffirmation of constraints as the primary organizing principle of human movement and learning. Newell's (1986) model demonstrates that coordination patterns do not arise from prescriptive motor programs but from the interaction of organismic, task, and environmental constraints. Subsequent ecological dynamics research extends this insight by showing how skill acquisition involves the attunement to affordances, or opportunities for action, that are specific to particular contexts (Davids et al., 2011; Seifert et al., 2018). This perspective reframes variability not as error but as a functional feature of adaptive systems.

A second major result concerns the integration of physical literacy within an ecological dynamics framework. O'Sullivan et al. (2020) and Rudd (2021) argue that physical literacy is not a fixed set of competencies but a dynamic disposition that evolves through ongoing interactions with varied environments. The synthesis reveals that ecological dynamics provides the mechanistic explanation for this process, showing how motivation, confidence, and competence co-emerge as learners successfully navigate meaningful movement challenges. This integration resolves conceptual ambiguities in the physical literacy literature by grounding it in observable interactional processes.

Third, the analysis highlights robust links between embodied movement tasks and cognitive regulation. McClelland et al. (2014) demonstrate that performance on the Head–Toes–Knees–Shoulders task, which requires inhibitory control, working memory, and attentional flexibility, predicts early academic achievement. When interpreted through an ecological lens, these findings suggest that executive function develops through embodied engagement with structured constraints rather than through abstract cognitive training alone. Rudd et al. (2019) further support this conclusion by showing how

manipulating environmental constraints in physical education can enhance self-regulation skills.

A fourth result emerges from the examination of assessment and analysis tools. Instruments such as the GPAI (Oslin et al., 1998) and network-based analyses of team sports (Passos et al., 2011) shift the focus of assessment from isolated technical execution to functional performance within game contexts. These tools reveal patterns of interaction, decision-making, and coordination that are invisible to reductionist metrics, thereby operationalizing ecological principles in applied settings.

Finally, the synthesis identifies strong conceptual convergence between ecological dynamics and game-based learning. Malone's (1981) theory of intrinsic motivation emphasizes challenge, curiosity, and control, elements that align closely with ecological notions of affordance-rich environments and self-directed exploration. Educational and landscape games (Lawson, 2003; Hopwood et al., 2013) function as simplified but meaningful representations of complex systems, enabling learners to experiment with constraints and observe emergent outcomes. This result underscores the potential of games as deliberately designed ecological niches for learning.

DISCUSSION

The integrated findings presented above have significant implications for theory, pedagogy, and research across education, sport, and movement science. At a theoretical level, the synthesis reinforces the view that learning is fundamentally an embodied, relational process. Ecological dynamics challenges the dualistic separation of mind and body by demonstrating that cognition, perception, and action are inseparable components of adaptive behavior (Riley et al., 2011). When combined with physical literacy, this perspective suggests that educational success and lifelong engagement in activity depend not on isolated skill acquisition but on the cultivation of rich, meaningful interactions with the environment.

From a pedagogical standpoint, the constraints-led approach articulated by Renshaw and Chow (2019) offers a practical framework for designing learning environments that align with these theoretical insights. Rather than prescribing specific techniques or solutions, educators and coaches can manipulate task constraints, space, rules, and social dynamics to guide learners toward functional

solutions. This approach is equally applicable in physical education, sport training, and game-based classroom learning, highlighting its versatility.

The discussion also reveals important implications for assessment. Traditional assessments that prioritize standardized, decontextualized measures may fail to capture the adaptive and emergent nature of learning described in this framework. Tools like the GPAI (Oslin et al., 1998) and network analyses (Passos et al., 2011) demonstrate alternative ways of evaluating performance that respect contextual variability and interactional complexity. Extending such approaches to academic and environmental education contexts could yield more ecologically valid assessments of learning.

Nevertheless, several limitations and tensions warrant consideration. One challenge lies in the practical implementation of ecological and game-based approaches within institutional settings that prioritize standardization and accountability. Designing constraint-rich, exploratory environments requires expertise, time, and flexibility that may not always be available. Additionally, while the theoretical convergence is compelling, empirical research directly linking ecological dynamics, physical literacy, and game-based learning remains limited, pointing to the need for interdisciplinary studies that bridge these domains.

Future research should therefore focus on longitudinal and mixed-methods designs that examine how embodied, game-based interventions influence cognitive, motivational, and social outcomes over time. Such research could build on existing work in team sports, executive function, and environmental gaming to develop a more comprehensive evidence base for integrated ecological pedagogy.

CONCLUSION

This article has developed a comprehensive, publication-ready theoretical synthesis that integrates ecological dynamics, physical literacy, motor development, and game-based learning into a unified framework for understanding human learning and performance. Drawing strictly on the provided references, it has argued that movement, cognition, motivation, and decision-making emerge from dynamic interactions among individual, task, and environmental constraints. By situating physical literacy within an ecological dynamics framework and aligning it with principles of intrinsically motivating game

design, the article offers a coherent and powerful paradigm for education and sport.

The conclusions reached underscore the need to move beyond reductionist models and toward pedagogies that embrace variability, exploration, and context sensitivity. Whether in physical education, academic classrooms, or environmental decision-making, learning environments designed as ecological systems and meaningful games have the potential to foster adaptive, engaged, and literate learners across the lifespan.

REFERENCES

1. Maguire, E., & United States Army Corps of Engineers. (1884). Professional notes. Washington, D.C.: Government Printing Office.
2. McClelland, M. M., Cameron, C. E., Duncan, R., Bowles, R. P., Acock, A. C., Miao, A., & Pratt, M. E. (2014). Predictors of early growth in academic achievement: The head-toes-knees–shoulders task. *Frontiers in Psychology*, 5, 599.
3. Miller, A., Eather, N., Duncan, M., & Lubans, D. R. (2019). Associations of object control motor skill proficiency, game play competence, physical activity and cardiorespiratory fitness among primary school children. *Journal of Sports Sciences*, 37(2), 173–179.
4. Newell, K. M. (1986). Constraints on the development of coordination. In M. Wade & H. T. A. Whiting (Eds.), *Motor development in children: Aspects of coordination and control* (pp. 341–360). Dordrecht, Netherlands: Martinus Nijhoff.
5. Ng, J. L., & Button, C. (2018). Reconsidering the fundamental movement skills construct: Implications for assessment. *Movement Sport Sciences*, (4), 19–29.
6. O’Sullivan, M., Davids, K., Woods, C. T., Rothwell, M., & Rudd, J. (2020). Conceptualizing physical literacy within an ecological dynamics framework. *Quest*, 72(4), 448–462.
7. Oslin, J. L., Mitchell, S. A., & Griffin, L. L. (1998). The game performance assessment instrument (GPAI): Development and preliminary validation. *Journal of Teaching in Physical Education*, 17(2), 231–243.
8. Passos, P., Amaro e Silva, R., Gomez-Jordana, L., & Davids, K. (2020). Developing a two-dimensional landscape model of opportunities for penetrative passing in association football. *Journal of Sports Sciences*, 1–8.
9. Passos, P., Davids, K., Araújo, D., Paz, N., Minguéns, J., & Mendes, J. (2011). Networks as a novel tool for studying team ball sports as complex social systems. *Journal of Science and Medicine in Sport*, 14(2), 170–176.
10. Renshaw, I., & Chow, J. Y. (2019). A constraint-led approach to sport and physical education pedagogy. *Physical Education and Sport Pedagogy*, 24(2), 103–116.
11. Ribeiro, J., Davids, K., Araújo, D., Guilherme, J., Silva, P., & Garganta, J. (2019). Exploiting bi-directional self-organizing tendencies in team sports. *Frontiers in Psychology*, 10, 2213.
12. Riley, M. A., Richardson, M., Shockley, K., & Ramenzoni, V. C. (2011). Interpersonal synergies. *Frontiers in Psychology*, 2, 38.
13. Rudd, J. (2021). Understanding the ecological roots of physical literacy and how we can build on this to move forward. In *Nonlinear pedagogy and the athletics skills model* (pp. 20–38). Routledge.
14. Rudd, J. R., O’Callaghan, L., & Williams, J. (2019). Physical education pedagogies built upon theories of movement learning. *International Journal of Environmental Research and Public Health*, 16(9), 1630.
15. Seifert, L., Papet, V., Strafford, B. W., Coughlan, E. K., & Davids, K. (2018). Skill transfer, expertise and talent development. *Movement & Sport Sciences*, (102), 39–49.
16. Hopwood, J. L., Flowers, S. K., Seidler, K. J., & Hopwood, E. L. (2013). Race to displace: A game to model the effects of invasive species on plant communities. *American Biology Teacher*, 75(3), 194–201.
17. Jankowski, P., Robischon, S., Tuthill, D., Nyerges, T., & Ramsey, K. (2006). Design considerations and

evaluation of a collaborative, spatio-temporal decision support system. *Transactions in GIS*, 10(3), 335–354.

18. Kiili, K. (2007). Foundation for problem-based gaming. *British Journal of Educational Technology*, 38(3), 394–404.

19. Lawson, G. (2003). Ecological landscape planning: A gaming approach in education. *Landscape Research*, 28(2), 217–223.

20. Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. *Cognitive Science*, 5(4), 333–369.

21. Malone, T. W., & Lepper, M. R. (1987). Making learning fun: A taxonomy of intrinsic motivations for learning. In R. E. Snow & M. J. Farr (Eds.), *Aptitude, learning, and instruction* (pp. 223–253). Erlbaum.

22. McIntyre, S. (2003). The landscape game: A learning tool demonstrating landscape design principles. *Ecological Management & Restoration*, 4(2), 103–109.

23. Millennium Ecosystem Assessment. (2005). *Ecosystems and human well-being: Synthesis*. Island Press.

24. O’Neil, H. F., Wainess, R., & Baker, E. L. (2005). Classification of learning outcomes. *Curriculum Journal*, 16(4), 455–474.

25. Pivec, M., & Dziabenko, O. (2004). Game-based learning in universities and lifelong learning. *Journal of Universal Computer Science*, 10(1), 14–26.